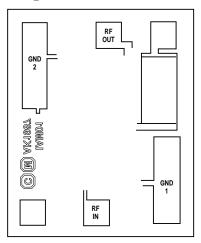


Low Noise, Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

INA-01100

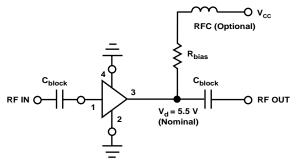
Features


- Cascadable 50 Ω Gain Block
- Low Noise Figure: 1.7 dB Typical at 100 MHz
- High Gain: 32.5 dB Typical at 100 MHz
- **3 dB Bandwidth:** DC to 500 MHz
- Unconditionally Stable (k>1)

Description

The INA-01100 is a low-noise silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) feedback amplifier chip. It is designed for narrow or wide bandwidth industrial and military applications that require high gain and low noise IF or RF amplification. The INA series of MMICs is fabricated using HP's 10 GHz f_T, 25 GHz f_{MAX}, ISOSATTM-I silicon bipolar process which uses nitride self-alignment, submicrometer lithography, trench isolation, ion implantation, gold metallization and polyimide intermetal dielectric and scratch protection to achieve excellent performance, uniformity and reliability.

The recommended assembly procedure is gold-eutectic die attach at 400°C and either wedge or ball bonding using 0.7 mil gold wire.^[1]


Chip Outline^[1]

Note:

1. See Application Note, "A005: Transistor Chip Use" for additional information.

Typical Biasing Configuration

INA-01100	Absolute	Maximum	Ratings
THE OTION	110001000	THUR ALL OT ALL	recounts

Parameter	Absolute Maximum ^[1]				
Device Current	50 mA				
Power Dissipation ^[2,3]	400 mW				
RF Input Power	+13dBm				
Junction Temperature	200°C				
Storage Temperature	-65 to 200°C				

Thermal Resistance:

 $\theta_{jc} = 60^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{Mounting Surface}(T_{MS}) = 25$ °C.

3. Derate at 16.7 mW/°C for $T_{MS} > 176$ °C.

INA-01100 Electrical Specifications $^{[1,3]},\,T_{\rm A}=25^\circ C$

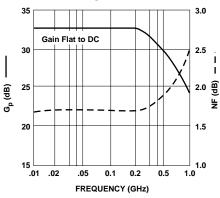
Symbol	Parameters and Test Conditions ^[2] :	$I_d = 35 \text{ mA}, Z_0 = 50 \Omega$	Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	$f = 100 \mathrm{MHz}$	dB		32.5	
ΔG_P	Gain Flatness	f = 10 to 250 MHz	dB		± 0.5	
f _{3 dB}	3 dB Bandwidth		MHz		500	
ISO	Reverse Isolation ($ S_{12} ^2$)	f = 10 to 250 MHz	dB		39	
VSWR	Input VSWR	f = 10 to 250 MHz			1.6:1	
VSWK	Output VSWR	f = 10 to 250 MHz			1.5:1	
NF	50Ω Noise Figure	f = 100 MHz	dB		1.7	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 100 MHz	dBm		11	
IP_3	Third Order Intercept Point	f = 100 MHz	dBm		23	
tD	Group Delay	f = 100 MHz	psec		200	
Vd	Device Voltage		V	4.0	5.5	7.0
dV/dT	Device Voltage Temperature Coefficient		mV/°C		+10	

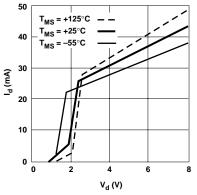
Notes:

1. The recommended operating current range for this device is 30 to 40 mA. Typical performance as a function of current is on the following page.

2. RF performance of the chip is determined by packaging and testing 10 devices per wafer.

3. The values are the achievable performance for the INA-01100 mounted in a 70 mil stripline package.


					0		11	00		
S ₁₁		S ₂₁		\mathbf{S}_{12}		\mathbf{S}_{22}				
Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.09	-16	32.7	43.4	-1	-38.5	.012	-1	.18	1	1.17
0.10	-27	32.7	43.1	-10	-38.6	.012	15	.19	5	1.18
0.11	-5	32.4	41.9	-20	-38.4	.012	-8	.20	10	1.17
0.14	-80	31.6	38.0	-37	-38.6	.012	4	.24	14	1.22
0.18	-98	30.5	33.7	-52	-38.8	.011	-10	.27	15	1.31
0.20	-110	29.4	29.6	-65	-39.6	.011	2	.30	10	1.51
0.22	-115	28.4	26.2	-75	-38.6	.012	-12	.32	6	1.48
0.24	-120	27.4	23.4	-84	-39.1	.011	-7	.34	1	1.67
0.27	-124	25.7	19.3	-100	-38.3	.012	-6	.36	-11	1.76
0.30	-127	24.3	16.3	-115	-36.1	.016	-5	.36	-22	1.58
0.44	165	21.8	12.37	-179	-33.6	.020	42	.19	-69	1.75
0.44	154	17.9	7.88	146	-33.0	.022	42	.13	-106	2.42
0.46	148	14.6	5.36	121	-30.6	.029	36	.12	-151	2.63
0.48	139	11.4	3.71	96	-30.0	.032	45	.10	159	3.31
	Mag 0.09 0.10 0.11 0.14 0.18 0.20 0.22 0.24 0.27 0.30 0.44 0.44	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MagAngdB 0.09 -16 32.7 0.10 -27 32.7 0.11 -5 32.4 0.14 -80 31.6 0.18 -98 30.5 0.20 -110 29.4 0.22 -115 28.4 0.24 -120 27.4 0.27 -124 25.7 0.30 -127 24.3 0.44 165 21.8 0.44 154 17.9 0.46 148 14.6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


INA-01100 Typical Scattering Parameters^[1] ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{CC} = 35 m$ A)

Note:

1. S-parameters are de-embedded from 70 mil package measured data using the package model found in the DEVICE MODELS section of the *Communications Components Designer's* Catalog.

INA-01100 Typical Performance, $T_A = 25^{\circ}C$ (unless otherwise noted: The values are the achievable performance for the INA-01100 mounted in a 70 mil stripline package.)

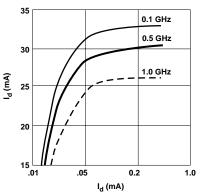


Figure 1. Typical Gain and Noise Figure Figure 2. Device Current vs. Voltage. vs. Frequency, $T_A = 25^{\circ}C$, $I_d = 35 \text{ mA}$

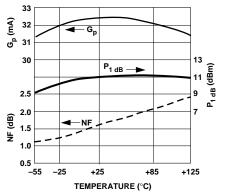
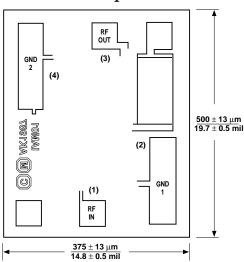



Figure 4. Output Power and 1 dB Gain Compression, NF and Power Gain vs. CaseTemperature. f = 0.1 GHz, I_d = 35 mA.

INA-01100 Chip Dimensions

Chip thickness is 140 $\mu\text{m}/\text{5.5}$ mil. Bond Pads are 41 $\mu\text{m}/\text{1.6}$ mil typical on each side. Note: Ground Bonding is Critical. Refer to Application Bulletin, "AB-0007: INA Bonding Configuration".

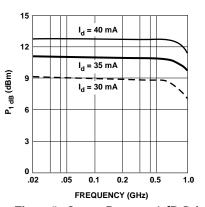


Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

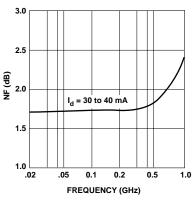


Figure 6. Noise Figure vs. Frequency.